jOas wEb Sci

Aller au contenu | Aller au menu | Aller à la recherche

Assimilation

Fil des billets

jeudi, novembre 15 2007

Méthode d'assimilation - Coût de Calcul et filtres dégradés

Les différents filtres de Kalman à rang réduit représentent des approches réalistes permettant l'implémentation du filtre de Kalman à des problèmes complexes et de grandes tailles.

En effet, alors que l'utilisation des filtres de Kalman ou de Kalman étendu nécessitent des ressources informatiques hors de portée pour des problèmes de grandes tailles comme l'océanographie ou la météorologie, le passage à un sous-espace représentatif de taille beaucoup plus petite permet la mise en oeuvre réaliste des méthodes utilisant cette technique.

Lire la suite...

Méthode d'assimilation - Filtre SEIK

Le filtre de Kalman étendu peut présenter des instabilités en présence de fortes non-linéarités jusqu'à, parfois, diverger complètement (Evensen, 1992 ; Gauthier etal., 1994 et Kushner, 1967). Une possibilité pour tenter de résoudre cette difficulté est de remplacer la linéarisation dans le filtre de Kalman étendu par un développement de Taylor d'ordre supérieur. Malheureusement, cette approche n'est pas envisageable sur des systèmes de grandes dimensions comme l'océanographie. Une autre approche est possible en utilisant des méthodes stochastiques de type Monte Carlo pour estimer l'évolution de la matrice de covariance d'erreur par un nuage d'états centrés autour de l'état courant et donc la matrice de covariance empirique est celle de la matrice considérée. Cette approche, introduite par Evensen en 1994 avec son filtre de Kalman d'ensemble, est un très bon moyen pour traiter les modèles d'évolution fortement non-linéaires. Cette méthode sera présentée dans la section sur le filtre de Kalman d'ensemble. Néanmoins, cette méthode est limitée par la taille de l'échantillon à considérer.

En 2001, Pham etal. ont proposé une variante du filtre de SEEK, appelé filtre de Kalman Singulier Évolutif Interpolé (SEIK), dans lequel la taille de l'échantillon est, en un certain sens, minimale. En effet, il substitue à la linéarisation opérée dans le filtre de Kalman étendu et dans le SEEK une interpolation sur un échantillon d'états bien choisis propagés dans l'étape de prévision. L'idée du SEIK est donc de faire évoluer la matrice de covariance d'erreur à l'aide d'un nuage de points de taille raisonnable. Dans ce but, Pham a émit l'hypothèse de rang faible \[r\] de la matrice de covariance d'erreur pour réduire la taille du nuage de points à \[r+1\] points exactement. L'autre originalité de ce filtre réside dans le choix des états d'interpolation qui sont tirés "au hasard" à chaque pas de filtrage afin de ne pas privilégier une direction particulière de l'espace d'état. La Fig. 1 permet de mettre en évidence les différentes étapes nécessaire au filtre SEIK.

Filtre SEIK
Fig.1 : Représentation schématique des différentes étapes du filtre SEIK lors d'un cycle d'assimilation du temps \[t_i\] au temps \[t_{i+1}\]. L'indice \[k\] variant de \[1\] à \[r+1\] représente les différents membres du nuage de points.

Méthode d'assimilation - Filtre SEEK

Le filtre SEEK (Singular Evolutive Extended Kalman filter) a été introduit par Pham etal. en 1998. Il s'agit d'un filtre réduit déduit du filtre de Kalman étendu. Il repose sur la stagnation ou la décroissance du rang des matrices de covariances d'erreur, une propriété avérée ou forcée selon les cas.

Lire la suite...

Méthode d'assimilation - Filtre RRSQRT

Le filtre RRSQRT est une réponde à ce problème. Il permet d'éviter les différentes difficultés d'implémentation mise en évidence auparavant en représentant les directions principales des matrices d'erreur par des modes réduits. Ainsi, il possible d'utiliser exclusivement les modes au détriment des matrices.

Lire la suite...

Méthode d'assimilation - Les filtre de Kalman réduits

Depuis R. E. Kalman, les filtres ont été utilisés dans de nombreuses applications. Mais très vite, les aspects limitants de l'implémentation du filtre de Kalman sont apparus. Ainsi, l'assimilation de données n'était pas possible dans des domaines comme la météorologie, ou plus tard, l'océanographie car les dimensions du problème rendaient excessif le coût numérique et, de plus, les statistiques nécessaires au filtre de Kalman ne sont que rarement connues.

Pour résoudre ce problème, une hypothèse peut permettre de le contourner. L'idée est, qu'à un instant donné, la physique du modèle est contrôlée par un nombre ou une combinaison limitée de variables. L'hypothèse est alors que les statistiques d'erreurs significatives sont données par celles portant sur ces variables contrôlant la physique du modèle (les modes réduits). Il est alors nécessaire des les identifier. De plus, il faut aussi être capable d'enrichir stochastiquement le système afin que la base de modes réduits puisse évoluer sans contraintes trop fortes. En effet, le risque est que ces modes, s'ils dégénèrent, ne sous-tendent plus la fraction de l'espace des états dans lequel évolue le système.

- page 3 de 7 -